EVALUATION OF SELECTED LEAVES OF TREES AND FOLIAGE OF SHRUBS AS FODDER IN RUMINANT PRODUCTION

O.A FASAE*, O.S. SOWANDE AND A.A. POPoolA

Department of Animal Production and Health, University of Agriculture, P.M.B. 2240, Abeokuta, Nigeria.

*Corresponding author: animalexp@yahoo.co.uk

ABSTRACT

The potentials of selected leaves of trees and foliage of shrubs as fodder in ruminant production system were evaluated using chemical composition and in vitro dry matter digestibility as indices. The selected trees were Enterolobium cyclocarpum, Leucaena leucocephala, Moringa oleifera, Gliricidia sepium, Pterocarpus santalinoides, and Millettia grifoniana, and shrubs were Stylosanthes scabra, Tephrosia bracteolata and Lablab purpureus. The results showed that the chemical compositions of leaves of trees and foliage of shrubs varied significantly (p<0.05) among species. The crude protein (CP) content of the tree leaves ranged from 15.20 to 25.43% for Pterocarpus santalinoides and Moringa oleifera leaves, respectively, while CP in foliage of shrubs ranged from 21.63 and 26.67% for Stylosanthes scabra, and Lablab purpureus, respectively. The in vitro dry matter digestibilities of these leaves also varied significantly (p<0.05) with the selected trees ranging from 40.80 to 74.75% for Millettia grifoniana and Gliricidia sepium, respectively while shrubs ranged from 50.35 to 61.24% for Stylosanthes scabra, and Lablab purpureus, respectively. Results indicated that these forages are highly digestible and their inherent nutrients are higher than the range recommended for maintenance in ruminant production. These fodders can be fed as supplements to low protein forage and can alleviate feed shortages experienced for ruminants in dry season.

Keywords: Ruminant, fodder, tree, shrub, chemical composition, in vitro digestibility

INTRODUCTION

Nutrition is the most important consideration in ruminant production systems. Supply of feed in inadequate amount and quality is responsible to a large extent for the low livestock productivity in the tropics. Ruminant animals depend solely on plants for their nutrient requirement in general and energy in particular. As man competes with his livestock for edible grains, forage has been reported (Das and Ghosh, 2001) to contribute about 75% of the dietary needs of ruminants fattened on liberal grain supplement. In areas of the world, where grain feeding is not common, ruminants obtain about 95% of their nutrient requirement from forage.

The feeding value of any forage is a function of characteristics of the species, such as its availability, accessibility and nutrient availability. In ruminant production, the feeding value of forages depends on the balance between available nutrient and the quantity of the nutrient ingested by the animal (Matlebyane, 2005).
Trees and shrubs are important components of ruminant diet (Babayemi and Bamikole, 2006) and they have been found to play an important role in the nutrition of grazing animals in areas where few or no alternatives are available (Meuret et al., 1990; Van et al., 2005). The leaves of *Leucaena leucocephala* and *Gliricidia sepium* plants for instance have been widely reported (Mba et al., 1981; Akbar and Gupta 1985; Larbi et al., 1993; Shelton and Brewbaker, 1994; Fasae et al., 2006) as valuable forage supplements to ruminants consuming low-protein diets. The present report elucidates information on the chemical composition and *in vitro* dry matter digestibility of selected leaves of trees and foliage of shrubs within the campus of the University of Agriculture, Abeokuta, Nigeria as fodder in ruminant production.

MATERIALS AND METHODS

The leaves of six trees, *Enterolobium cyclocarpum*, *Leucaena leucocephala*, *Moringa oleifera*, *Gliricidia sepium*, *Pterocarpus santalinoides*, *Milletia giffiana*, and three shrubs namely *Stylosanthes sahara*, *Tephrosia bracteolata* and *Lablab purpureus* used for this study were harvested by hand from 5 different plants growing within the campus of the University of Agriculture, Abeokuta, Nigeria. The University is located on latitude 7° 15’N and longitude 3° 25’E and 76 meters above sea level in the forest savannah transition zone of South Western Nigeria. It receives a mean annual precipitation of 1,037mm with a mean annual temperature of 34°C and mean relative humidity of 82%.

The leaf samples of each plant were sun dried for five days before taking to laboratory for determination of the dry matter, crude protein and ether extract (AOAC, 1995), neutral detergent fibre, acid detergent fibre and acid detergent lignin (Van Soest et al., 1994). The *in vitro* digestibility was determined according to Tilley and Terry (1963).

Data generated were subjected to one way analysis of variance using the statistical package of SAS (1999) and significant means were separated (Duncan 1955).

RESULTS AND DISCUSSION

The chemical composition of the selected trees is shown in Table 1. The dry matter (DM) content was highest (p<0.05) in *Milletia giffiana* (38.50%) and lowest (p<0.05) in *Moringa defera* leaves (20.50%). The DM content of leaves from *Moringa oleifera*, *Milletia giffiana* and *Pterocarpus santalinoides* were similar to such reported elsewhere (Arigbede et al., 2006). The DM content of leaves of *Enterolobium cyclocarpum* was lower than 39.08% (Babayemi and Bamikole, 2006). The variation in DM content among the tree leaves may be attributable to the stage and season of leaf harvest.

The apparent differences in contents of CP among tree species were significant. Values (%) ranged from 15.20 to 25.43 for *Pterocarpus santalinoides* and *Moringa defera* leaves, respectively. The value obtained for the CP content of leaves from *Moringa oleifera* is similar to previous report (Oyedele et al. 2008), while that of *Gliricidia sepium* leaves falls within the range 18.5 to 26.1 (Carew, 1983) but higher than 15.7% (Bawala et al. 2006). However, CP content of *Leucaena leucocephala* and *Enterolobium cyclocarpum* leaves fell within the available range 20.70% to 25.21% and 19.75% to 23.55%, respectively in literature (Odeyinka, 2001; Reddy and Elanchezhian, 2008; Oni et al., 2008). The ether extract content was highest (p<0.05) in *Moringa defera* leaves (6.6%) and least in *Gliricidia sepium* leaves (1.99%). The highest ash content
Table 1: Chemical composition (%) of leaves from selected trees as fodder in ruminant production

<table>
<thead>
<tr>
<th>Chemical constituents</th>
<th>Selected Trees</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enterolobium</td>
<td>Leucaena</td>
<td>Moringa</td>
<td>Gliricidia</td>
<td>Pterocarpos</td>
<td>Millettia</td>
<td></td>
</tr>
<tr>
<td>Dry matter</td>
<td>35.00<sup>b</sup></td>
<td>31.65<sup>c</sup></td>
<td>20.50<sup>c</sup></td>
<td>25.00<sup>d</sup></td>
<td>35.02<sup>b</sup></td>
<td>38.50<sup>b</sup></td>
<td>1.52</td>
</tr>
<tr>
<td>Crude protein</td>
<td>20.42<sup>b</sup></td>
<td>21.60<sup>b</sup></td>
<td>25.43<sup>b</sup></td>
<td>19.57<sup>a</sup></td>
<td>15.20<sup>d</sup></td>
<td>19.45<sup>d</sup></td>
<td>1.05</td>
</tr>
<tr>
<td>Ether extract</td>
<td>2.14<sup>bc</sup></td>
<td>3.45<sup>b</sup></td>
<td>6.60<sup>b</sup></td>
<td>1.99<sup>c</sup></td>
<td>2.48<sup>c</sup></td>
<td>2.91<sup>bc</sup></td>
<td>0.49</td>
</tr>
<tr>
<td>Ash</td>
<td>7.10<sup>d</sup></td>
<td>8.61<sup>cd</sup></td>
<td>12.61<sup>a</sup></td>
<td>10.75<sup>b</sup></td>
<td>10.36<sup>c</sup></td>
<td>11.36<sup>b</sup></td>
<td>0.49</td>
</tr>
<tr>
<td>Neutral detergent fibre</td>
<td>64.00<sup>a</sup></td>
<td>68.70<sup>b</sup></td>
<td>63.27<sup>b</sup></td>
<td>52.65<sup>c</sup></td>
<td>59.43<sup>b</sup></td>
<td>59.67<sup>b</sup></td>
<td>1.83</td>
</tr>
<tr>
<td>Acid detergent fibre</td>
<td>38.25<sup>b</sup></td>
<td>41.20<sup>b</sup></td>
<td>41.17<sup>b</sup></td>
<td>29.95<sup>c</sup></td>
<td>40.32<sup>b</sup></td>
<td>36.25<sup>b</sup></td>
<td>1.41</td>
</tr>
<tr>
<td>Acid detergent lignin</td>
<td>22.75<sup>a</sup></td>
<td>10.95<sup>c</sup></td>
<td>22.67<sup>a</sup></td>
<td>9.75<sup>c</sup></td>
<td>14.95<sup>d</sup></td>
<td>21.15<sup>a</sup></td>
<td>1.35</td>
</tr>
</tbody>
</table>

^{a, b, c, d} means on the same row with different superscripts are significant (p<0.05).

SEM – Standard error of means
obtained in the study was obtained for *Moringa oleifera* (12.61%) while the least was in *Enterolobium cyclocarpum* (7.10%). The NDF and ADF contents varied among tree species with the highest value of 63.27 and 41.20%, respectively recorded for *Leucaena leucocephala* leaves and the least (p<0.05) content of 56.25 and 29.25%, respectively observed for *Gliricidia sepium* leaves. These values are however, higher than 38.38, 27.11 and 7.86% obtained for NDF and ADF, respectively for *Gliricidia* leaves (Reddy and Elanchezhian, 2008). The ADL content was highest in *Enterolobium cyclocarpum* leaves (22.75%) while *Gliricidia sepium* had the least (p<0.05). The NDF observed for *Moringa oleifera* leaves (59.67%) was comparable to the value of 60.70% reported by Arigbede et al., (2006) while the NDF of *Millettia grifoniana* (63.20%) and *Pterocarpus santalinoides* (59.43%) were similar to 60.4 and 60.7%, respectively (Arigbede et al., 2006). The variation observed in the fibre fractions in the studies could be due to species and genotypic differences, stage of growth (Rubanza et al., 2005) and fibre contents due to lignification (Minson, 1990).

Table 2 shows the chemical composition of the selected forage shrubs. The DM contents (%) varied from 23.80 to 36.58. The CP content (%) obtained for the leaves of *Lablab purpureus* (26.67) was significantly (p<0.05) higher than the values obtained for the leaves of *Tephrosia bracteolata* and *Stylosanthes scabra*.

The ether extract content varied among the leaves with *Lablab purpureus* having the highest (p<0.05) value (3.3%) with *Tephrosia bracteolata* having the least (1.42%). Values recorded for the ash in the leaves of *Tephrosia bracteolata* *Lablab purpureus* and *Stylosanthes scabra* were similar (p<0.05).

The NDF value was significantly (p<0.05) higher in leaves of *Stylosanthes scabra* than *Lablab purpureus* and *Tephrosia bracteolata*. The highest ADF value was recorded for *Lablab purpureus* with least value for *Tephrosia bracteolata* leaves.

The proximate composition and fibre fractions of leaves of trees and shrubs recorded for the present study are comparable with the value reported elsewhere (Senani et al., 1997; Das and Ghosh 2001; Van et al., 2005; Reddy, 2006).

Earlier reports (El-Shatnawi and Mohawesh, 2000; Gatenby, 2002) suggested that ruminants require 7 to 9% CP for maintenance and 10 to 12% for lactation. It seems to be likely that the shrub and tree leaves studied in this experiment as a sole feed or supplement will meet the CP requirements of ruminants for maintenance and lactation since their CP contents were higher than the reported ranges for ruminant requirements.

The in vitro dry matter digestibilities (IVDMD) of the leaves of selected trees ranged from 40.80% to 74.75% for *Millettia grifoniana* and *Gliricidia sepium*, respectively (Figure 1) while shrubs ranged from 50.35% to 61.24% for *Stylosanthes scabra*, and *Lablab purpureus*, respectively (Figure 2).

The differences observed in the digestibility of the leaves might be peculiar or due to anti-nutritional factors such as tannins as documented (Getachew et al., 2000, Makkar, 2003 and Murdiati et al., 2005).

The values obtained for IVDMD of various tree and shrub leaves falls within the range reported for fodders like *Aldina cordifolia* (Benavides, 1999); *Memnia aethiopica* (Yusuf, 2009); *Olea europea* (Karabulut et al., 2006)
Table 2: Chemical composition (%) of leaves of selected shrubs as fodder for ruminant production

<table>
<thead>
<tr>
<th>Chemical constituents</th>
<th>S. scabra</th>
<th>T. bracteolata</th>
<th>L. purpureus</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry matter</td>
<td>36.58a</td>
<td>23.80c</td>
<td>30.00b</td>
<td>1.83</td>
</tr>
<tr>
<td>Crude protein</td>
<td>21.63b</td>
<td>22.31b</td>
<td>26.67a</td>
<td>1.10</td>
</tr>
<tr>
<td>Ether extract</td>
<td>2.26b</td>
<td>1.42c</td>
<td>3.30a</td>
<td>0.71</td>
</tr>
<tr>
<td>Ash</td>
<td>7.70</td>
<td>7.52</td>
<td>7.87</td>
<td>0.12</td>
</tr>
<tr>
<td>Neutral detergent fibre</td>
<td>60.95a</td>
<td>50.90b</td>
<td>47.87b</td>
<td>2.32</td>
</tr>
<tr>
<td>Acid detergent fibre</td>
<td>29.10ab</td>
<td>27.73b</td>
<td>33.83a</td>
<td>1.23</td>
</tr>
<tr>
<td>Acid detergent lignin</td>
<td>6.50a</td>
<td>11.31a</td>
<td>7.57a</td>
<td>1.07</td>
</tr>
</tbody>
</table>

a, b, c, means on the same row with different superscripts are significantly different (p< 0.05). SEM - Standard error of means

Figure 1: In-vitro dry matter digestibility (%) of trees as fodder for ruminant production.

EC - Enterolobium cyclocarpum, LL - Leucaena leucocephala, MO - Moringa oleifera, GS - Gliricidia sepium, PS - Pterocarpus santalinoides, and MG - Millettia gilornana
and maize leaves (Fasae et al., 2010) for ruminants.

However, most of these leaves when fed to ruminants have earlier been reported to improve ruminant production. Norton (1994) reported that Leucaena supplementation increased rumen ammonia concentration and stimulated microbial protein synthesis in the rumen. Bawala et al., (2006) observed that browse such as Gliricidia sepium fed to goats enhanced performance as reported elsewhere (Fasae et al., 2006) for the foliage of Gliricidia sepium. Acceptability of Enterolobium cyclocarpum leaves as a source of high quality nutrients for goats has also been reported to improve the utilization of citrus pulp at 50% level of inclusion in the diets (Oni et al., 2008).

Sarwatt et al. (2004) reported that decreasing the level of sunflower seedcake and replacing it with Moringa oleifera leaf meal increased the voluntary dry matter intake of goats particularly between 25 to 50% inclusion and concluded that the optimum economic level of substitution was 50% inclusion. Cattle fed up to 40% inclusion of Moringa oleifera leaves in their diets however did not enhance performance (Nouala, 2004). Feeding of lablab as a supplement to oat hay recorded average daily gain in sheep which was almost double that of animals on the basal diet (Umunna et al., 1995).

In addition, the supplement of Tephrosia bracteata foliage as a legume increased digestibility of poor roughages and voluntary DM intake (Mossi and Butterworth, 1985). Goats and sheep on range and in pens showed preference for Tephrosia bracteata leaves (Babayemi and Bamikole, 2006).

CONCLUSION

The study revealed that the nutrient compositions of these forages are higher than the range recommended for ruminant production. The relevance of evaluating the chemical compositions of the selected trees and
shrubs is evident as their leaves can make important contribution to ruminant production. These fodders can alleviate some of the feed shortages experienced in ruminant production especially in the dry season.

REFERENCES

Umunna, N.N., Osuji, P.O., Nsahlai, I.V., Khalili, M.A., Mohammed-Saleem, M.A. 1995. Effect of supplementing oat hay with lablab, sesbania, tagasate or wheat middlings on voluntary intake, N utilization and

(Manuscript received: 14th May, 2010; accepted: 17th December, 2010).