EVALUATION OF THE PHYTOCHEMICAL COMPOSITION AND ANTIMICROBIAL PROPERTIES OF CRUDE METHANOLIC EXTRACT OF LEAVES OF Ocimum gratissimum L.

G.I. AMEH

Department of Applied Biology and Biotechnology, Enugu State University of Science and Technology, Enugu, Nigeria. P.O. Box 1062, Nsukka Enugu State.
E-mail: g_ameh@yahoo.com Tel: +2348035090331

ABSTRACT

Methonolic extract of the leaves of Ocimum gratissimum L. was investigated for its phytochemical composition and antimicrobial properties. Phytochemical screening of the leaf extract revealed the presence of carbohydrates, proteins and terpenoids in high concentrations (+++). Reducing sugars, glycosides and tannins occurred in moderate amounts (+++) while saponins, flavonoids and steroids were present in low concentrations (+). The leaf extract was devoid of alkaloids, resins, oils and acidic compounds (-). Bacillus subtilis was the only microorganism sensitive to the leaf extract and had an inhibition zone diameter of 12.5mm. The minimum inhibitory concentration (MIC) of the extract against B. subtilis was 100 mg/ml. The antibacterial potential of this plant part which can be exploited in the future for its bioactive constituents has thus been demonstrated.

Keywords: Ocimum gratissimum, antimicrobial activity, Phytochemical, Minimum inhibitory concentration.

INTRODUCTION

The use of medicinal plants in most developing countries of the world for maintenance of good health care has been widely recognized (UNESCO, 1996). Traditional healers that claim the efficacies of medicinal plants for cure of several diseases are on the increase. Herbal medicine has since been used either as dietary supplement or for therapeutic purposes. Medicinal plants contain bioactive constituents that have been exploited in traditional medicine for the treatment of various ailments (Adebajo et al., 1983). Several authors have reported that plants contain a wide variety of bioactive constituents (Cowman, 1999, Edeoga et al., 2005). These bioactive constituents of plants have been demonstrated to possess antimicrobial properties. Banso and Adeyemo (2007) reported the antimicrobial activity of alkaloids, glycosides, flavonoids and tannins from Dracaena mannii stem bark. Report by Ogbonna et al., (2007) indicates that the seed extract of Ricinus communis had antifungal activity on Trichophyton sp and Candida albicans but had no antibacterial effects on Staphylococcus aureus and Escherichia coli. The leaf extract of Ocimum gratissimum was shown to have antimicrobial activity (Junaid, 2006, Mbata and Saikia, 2008).

Ocimum gratissimum is an aromatic medicinal
plant that belongs to the Lamiaceae family. It is a shrub found commonly around village huts and in gardens (Iwu, 1993). The leaves are used as vegetable and can be rubbed between palms and sniffed as treatment for blocked nostrils (Kokwara, 1993). O. gratissimum is used in the treatment of different diseases such as cough, diarrhoea, headache, fever, skin infections, pneumonia, barrenness, convulsion and regulation of menstruation (Harjula, 1980; Onajobi, 1986). Following the numerous uses of O. gratissimum in herbal medicine, a knowledge of the biological activity will provide valuable scientific data concerning the plant. Few studies have been carried out on O. gratissimum e.g. Mbata and Saikia, 2008, but the study was based on the ethanolic leaf extract and the test organism was Listeria monocytogenes. Therefore, the aim of this study was to investigate the phytochemical composition and antimicrobial properties of crude methanolic extract of the leaves of O. gratissimum.

MATERIALS AND METHODS

Collection of samples
Fresh leaves of *Ocimum gratissimum* were collected from the plants growing around a village house in Nsukka, Enugu State and authenticated by Mr. A.O. Ozioko, a Taxonomist of Bioresource Development and Conservation Programme (BDCP), Nsukka.

Preparation of plant material
The leaves were air-dried and grated in a mechanical greater. The grated material was sieved to obtain a fine powder. This was stored in a plastic container for further use.

Phytochemical tests
The phytochemical screening of the powdered leaf sample of O. gratissimum was carried out using the procedures and methods of Trease and Evans (1989).

Preparation of plant extract
Methanol extraction of the leaves of O. gratissimum was carried out using the procedure described by Harbone (1994). 25 g of the powered sample was Soxhlet extracted using 250 ml of 95% methanol. The exercise lasted for 24 hrs. The dried extract was then stored in a refrigerator at 4°C until required for use. Concentrations of 400, 200, 100, 50, 25, 12.5, 6.25 mg/ml of the extract were prepared by dilution.

Test organisms
Clinical isolates of *Escherichia coli*, *Burillus subtilis*, *Staphylococcus aureus*, *Pseudomonas aeruginosa*, *Aspergillus niger* and *Candida albicans* were obtained from Pharmaceutical Microbiology Laboratory of University of Nigeria, Nsukka and used in this study.

Sensitivity test
The antimicrobial tests of the plant extract were carried out on the test isolates using agar-diffusion method described by Boakye-Yiadom (1979). Nutrient agar (NA) and Sabouraud dextrose agar (SDA) were prepared for the tests. *E. coli*, *B. subtilis*, *S. aureus* and *P. aeruginosa* were inoculated on NA while *A. niger* and *C. albicans* were inoculated on SDA and spread uniformly using a sterile glass spreader. Cavities of 1 cm diameter were made on the nutrient agar using a sterile cork borer. The cut agar disks were removed with sterilized forceps. In each of the cavities was introduced 0.1 ml of the plant extract. One of the cavities was filled with 0.1 ml of methanol to serve as control. The agar plates were allowed to stand for 1 hr on the bench for diffusion to occur before the growth of the organisms commenced, and incubated at 37°C for 24 hrs. The average of the readings from the cavities...
except control was taken as the zone of inhibition of the microorganisms at that particular concentration.

Minimum inhibitory concentration (MIC)
The minimum inhibitory concentration of the extract was determined according to the technique of Baron and Finegold (1990). Standardized suspension of the test organism was inoculated into a series of sterile tubes of nutrient broth containing different concentrations of the leaf extract and incubated at 37°C for 24 hrs. The MIC was recorded as the least concentration that inhibited the growth of the test organism.

RESULTS
The leaf extract of *Ocimum gratissimum* showed positive results for carbohydrates, reducing sugars, glycosides, saponins, tannins, flavonoids, proteins, steroids and terpenoids (Table 1). However, the extract of the plant material was devoid of alkaloids, resins, oils and acidic compounds. Carbohydrates, proteins and terpenoids occurred in high concentrations. Reducing sugars, glycosides and tannins were present in medium concentrations while saponins, flavonoids and steroids were found in low concentrations (Table 1).

Table 2 shows the results of the sensitivity tests of the microorganisms to the leaf extract. Out of the six microorganisms assayed, only *Bacillus subtilis* was sensitive to the methanolic leaf extract of *O. gratissimum*. It had an inhibition zone diameter of 12.5 mm (Table 2).

The minimum inhibitory concentration (MIC) of the leaf extract of *O. gratissimum* against *Bacillus subtilis* is shown in Table 3. The MIC result indicated that methanolic extract of the leaf had MIC of 100mg/ml.

DISCUSSION
The phytochemical composition and antimicrobial properties of the leaves of *Ocimum gratissimum* have been studied. The positive results for carbohydrates, reducing sugars, glycosides, saponins, tannins, flavonoids, proteins, steroids and terpenoids confirms the presence of these secondary metabolites in the leaf extract of *O. gratissimum*. Similar secondary metabolites have been reported in *Raphia hokai* (Akap and Usoh, 2004), *Euphonia heterophylla* (Falodun et al., 2006), *Draaca mannii* (Banso and Adeyemo, 2007) and *Garinia kola* (Adegboye et al., 2008). Antimicrobial effects of plant extracts have been attributed to the presence of these secondary metabolites (Nweze et al., 2004; Oboh and Masodje, 2009). The presence of these metabolites in the investigated plant part account for its usefulness as a medicinal plant.

The zone of inhibition observed in this study is comparable to those obtained in other studies (Junaid, 2006; Adegboye et al., 2008). Various plants that are rich in alkaloids, tannins, glycosides, flavonoids, saponins have been shown to possess antimicrobial activity against a number of microorganisms. Adebajo et al. (1983) reported the presence of tannins, glycosides and alkaloids from leaf extract of *Eugenia uniflora* and that the methanolic extract of the plant was active against *E. coli, P. vulgaris, K. pneumoniae* and *A. niger*. Adiguzel et al. (2005) showed that methanol and ethanol leaf extracts of *Ocimum basilicum* inhibited *C. albicans* and *B. subtilis*. In this study, the leaf extract showed inhibitory activity against only one bacteria (*B. subtilis*) but did not show any activity against fungi. This could probably be due to the biochemical differences in the structure within the cell components of bacteria and fungi.
Table 1: Phytochemical characteristics of the leaf extract of *Ocimum gratissimum*

<table>
<thead>
<tr>
<th>Active Ingredients</th>
<th>Extract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbohydrates</td>
<td>+++</td>
</tr>
<tr>
<td>Reducing sugars</td>
<td>++</td>
</tr>
<tr>
<td>Alkaloids</td>
<td>-</td>
</tr>
<tr>
<td>Glycosides</td>
<td>++</td>
</tr>
<tr>
<td>Saponins</td>
<td>+</td>
</tr>
<tr>
<td>Tannins</td>
<td>++</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>+</td>
</tr>
<tr>
<td>Resins</td>
<td>-</td>
</tr>
<tr>
<td>Proteins</td>
<td>+++</td>
</tr>
<tr>
<td>Oils</td>
<td>-</td>
</tr>
<tr>
<td>Steroids</td>
<td>+</td>
</tr>
<tr>
<td>Terpenoids</td>
<td>+++</td>
</tr>
<tr>
<td>Acidic compounds</td>
<td>-</td>
</tr>
</tbody>
</table>

-absent, + low concentration, ++ medium concentration, +++ high concentration.

Table 2: Sensitivity test for microorganisms to the methanolic extract of *Ocimum gratissimum*

<table>
<thead>
<tr>
<th>Test Organism</th>
<th>Inhibition Zone Diameter (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Escherichia coli</td>
<td>0.0</td>
</tr>
<tr>
<td>* Bacillus subtilis</td>
<td>12.5</td>
</tr>
<tr>
<td>* Staphylococcus aureus</td>
<td>0.0</td>
</tr>
<tr>
<td>* Pseudomonas aeruginosa</td>
<td>0.0</td>
</tr>
<tr>
<td>= Aspergillus niger</td>
<td>0.0</td>
</tr>
<tr>
<td>= Candida albicans</td>
<td>0.0</td>
</tr>
</tbody>
</table>

* Bacteria = Fungi

Table 3: Minimum inhibitory concentration (MIC) of the leaf extract against *Bacillus subtilis*

<table>
<thead>
<tr>
<th>Test Organism</th>
<th>Concentration (mg/ ml) of the extract</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>400</td>
</tr>
<tr>
<td>B. subtilis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.5</td>
</tr>
</tbody>
</table>

NI = No inhibition

Fungi contain sterols in their cell membrane while this is absent in bacteria. According to Lorian (2000), antifungal agents have different mode of action from antibacterial agents.

The MIC observed in this study is similar to that reported by Nwadiaro and Nwachukwu (2007) on Ceiba pentandra. However, the MIC recorded by Mbata and Saikia (2008) on the ethanolic leaf extract of Ocimum gratissimum against Listeria monocytogenes was lower than what was observed in this study. The results of this study demonstrate that the leaf extract of Ocimum gratissimum contain a number of phytochemicals and has antibacterial activity. The isolation and characterization of the specific secondary metabolites contained in this plant part will be of interest.

REFERENCES

G.I. AMEH

(Manuscript received: 29th October, 2009; accepted, 29th August, 2011).